Pilares de creación en M16
Es una de las imágenes más famosas de la última década del siglo XX (clic en la imagen para ampliarla a 960 x 840 píxeles o verla aún más grande).
Tomada en 1995 por el Telescopio Espacial Hubble, muestra glóbulos gaseosos en evaporación (EGGs por sus siglas en inglés; el acrónimo también significa huevo) emergiendo desde pilares compuestos por gas de hidrógeno molecular y polvo.
Se trata de columnas gigantes, pues miden varios años-luz de longitud (*). Además, son tan densas que el gas interior se contrae gravitacionalmente para dar lugar a la formación de estrellas.
La intensa radiación procedente de las estrellas jóvenes y brillantes provoca la evaporación de la materia de baja densidad que se halla en la punta de cada columna (en la imagen de la derecha), un proceso que deja al descubierto las incubadoras estelares de densos huevos o EGGs.
La Nebulosa del Aguila, asociada con el cúmulo abierto de estrellas M16, se encuentra a unos 7 mil años-luz de distancia.
En 2007 el Telescopio Espacial Spitzer observó en el infrarrojo la región de los pilares de creación. El resultado parece indicar que los pilares podrían haber sido destruidos por una supernova cercana, pero cuya luz aún no ha llegado a la Tierra.
Una épica cósmica revelada en infrarrojo. La majestuosa vista tomada por el Telescopio Espacial Spitzer narra una historia hasta ahora no contada sobre la vida y la muerte en la Nebulosa del Aguila. La imagen de datos infrarrojos muestra el entramado completo de nubes turbulentas y de estrellas recién formadas de la región. El color verde representa las torres y campos de polvo más frío, entre ellas los tres famosos "pilares de la creación", destacados en el recuadro. Pero es el color rojo el que narra el drama que se desarrolla en la región. El rojo corresponde al polvo más caliente, el que, según los investigadores, fue calentado por el estallido de una estrella masiva acaecido hace unos 8 mil o 9 mil años. Como la luz procedente de la Nebulosa del Aguila demora unos 7 mil años en llegar hasta nosotros, la explosión de supernova debió notarse como la aparición repentina de una nueva estrella brillante en los cielos del planeta Tierra hace mil o 2 mil años. Según esta hipótesis, la onda expansiva del estallido habría demolido los tres pilares hace aproximadamente 6 mil años. Por consiguiente, no podremos observar la destrucción hasta dentro de mil años como mínimo. La onda expansiva que abatió las poderosas torres también expondrá las estrellas recién formadas que estaban ocultas en su interior y, al mismo tiempo, dará lugar a la formación de otras nuevas. Los pilares de la Nebulosa del Aguila fueron modelados originalmente por la radiación y el viento emitido por aproximadamente veinte estrellas masivas que se encuentran en la parte superior izquierda de la imagen, aunque resulten invisibles en los datos infrarrojos del Spitzer. La radiación y el viento estelar dispersó el polvo, provocando la formación de una cavidad vacía, vista hacia el centro de la imagen. Sólo resistieron aquellos bolsones más densos de gas y polvo (la punta de los pilares), acompañados por columnas de polvo más ligero que se encuentran en la sombra (la base de los pilares). Este proceso de modelado o esculpido condujo a la creación de una segunda generación de estrellas en el interior de los pilares. Si es cierto que una estrella explotó en la región, entonces es muy posible que estuviera junto con las otras estrellas masivas en la parte superior izquierda de la imagen. La onda expansiva ya podría haber causado la formación de una tercera generación de estrellas a partir de los restos de los pilares destruidos (clic en la imagen para ampliarla). Más información (en inglés).
Vía Foto astronómica del día correspondiente al 22 de julio de 2012. Esta página ofrece todos los días una imagen o fotografía del universo, junto con una breve explicación escrita por un astrónomo profesional. Crédito: J. Hester, P. Scowen (ASU), HST, NASA.
Entrada relacionada: ¿Son reales los colores de esta imagen?
(*) Acerca de las distancias cósmicas
Las distancias en astronomía se miden en unidades de años-luz, donde un año-luz es la distancia que la luz recorre en un año: 10 billones de kilómetros. Sin embargo, por razones históricas relacionadas con la medición de la distancia a las estrellas cercanas, los astrónomos profesionales usan la unidad conocida como pársec, siendo un pársec igual a 3,26 años-luz.
Los astrónomos calculan la distancia a las galaxias remotas —aquellas que están más allá de los 20 millones de años-luz— con la ley de Hubble. Según esta ley, el universo se expande de forma tal que las galaxias distantes se alejan entre sí a una velocidad proporcional a su distancia. La recesión, como se denomina este fenómeno, causa que la radiación de una galaxia se desplace hacia longitudes de onda más largas, un efecto conocido como el desplazamiento al rojo o redshift. A partir de la medición del corrimiento al rojo y la constante de proporcionalidad, denominada constante de Hubble, los astrónomos pueden determinar la distancia a una galaxia.
Uno de los problemas centrales de la astronomía moderna es determinar con la mayor precisión posible la constante de Hubble, o sea, la medición de la tasa de expansión del universo. En la actualidad la constante ha podido medirse con una precisión de un 20 por ciento, por lo que las distancias medidas suelen modificarse diciendo, por ejemplo, "alrededor de 100 millones de años-luz". En particular, el equipo del Observatorio Espacial Chandra asume para sus publicaciones un valor de la constante de Hubble que corresponde a una velocidad de recesión de 600 kilómetros por segundo para una fuente a una distancia de 30 millones de años-luz o 10 millones de pársecs (H0 = 60 km/s/Mpc).
Nota: Síganme en Twitter (@astrosofista) para saber más sobre el universo y mi mundo. Desde que comencé a tuitear en el equinoccio de marzo de 2011, unos 8200 tuits ilustran y amplían las más de 400 entradas publicadas en el blog desde entonces. ¿Qué esperan para unirse a esta gran conversación?
0 Sofismas:
Publicar un comentario
<< Home