M27, la Nebulosa Dumbbell

Charles Messier compilaba en ese época una lista de objetos difusos que no debían confundirse con cometas. El objeto vigésimo séptimo de la lista de Messier, conocido ahora como M27 o la Nebulosa Dumbbell, es una nebulosa planetaria, es decir, el tipo de nebulosa que el Sol generará cuando se detenga la fusión nuclear de su núcleo.

Alrededor de mil años demora la luz en llegarnos desde M27, la cual se muestra arriba en los colores emitidos por el hidrógeno y el oxígeno.
La comprensión de la física de M27 y su significado estaba mucho más allá de los conocimientos del siglo XVIII. Incluso hoy mismo numerosos aspectos de las nebulosas planetarias bipolares como M27 permanecen en el misterio, entre ellos, el mecanismo físico que expulsa el envoltorio gaseoso de una estrella poco masiva, dejando una enana blanca caliente que emite en rayos X (*).

Vía Foto astronómica del día correspondiente al 27 de diciembre de 2011. Esta página ofrece todos los días una imagen o fotografía del universo, junto con una breve explicación escrita por un astrónomo profesional. Crédito de la imagen y copyright: Bill Snyder (Bill Snyder Photography).
(*) Rayos X: otra forma de luz
En 1895 el físico alemán Wilhelm Roentgen descubrió una nueva forma de radiación. La llamó radiación X para denotar su naturaleza desconocida. Esta radiación misteriosa tenía la capacidad de pasar a través de muchos materiales que absorben la luz visible. Los rayos X también tienen la capacidad de arrancar los electrones que se encuentran en los orbitales exteriores de los átomos. Desde su descubrimiento, estas propiedades excepcionales de los rayos X han sido de gran utilidad en muchos campos, como la medicina y la investigación de la naturaleza del átomo.
Ulteriormente se descubrió que los rayos X eran otra forma de luz. La luz es el resultado de la constante agitación y vibración de la materia.
Tal como un perrito juguetón, la materia no puede quedarse quieta. La silla en la que están sentados puede parecer inmóvil y sentirse de esa manera. Pero si pudiésemos observar el comportamiento de la materia en el nivel atómico, veríamos que los átomos y las moléculas vibran a cientos de billones de veces por segundo, chocando unas con otras, mientras que los electrones se mueven a velocidades que rozan el millón de kilómetros por hora.

La luz puede tomar muchas formas: ondas de radio, microondas, infrarroja, visible u óptica, ultravioleta, rayos X y radiación gamma. Todas estas ondas son diferentes formas de luz.
La energía del fotón establece de qué clase de luz se trata. Las ondas de radio se componen de fotones de baja energía. Los fotones ópticos —los únicos fotones que podemos ver— son un millón de veces más energéticos que el típico fotón de radio. La energía de los fotones de los rayos X es desde cientos hasta miles de veces más elevada que la energía de los fotones ópticos.

La velocidad de las partículas cuando chocan o vibran impone un límite a la energía del fotón. La velocidad es también una medida de la temperatura. De esta manera, las partículas del aire se mueven en un día cálido a mayor velocidad que en un día frío.
Las temperaturas muy bajas (centenares de grados por debajo de cero) producen fotones de radio de baja energía y microondas, mientras que los cuerpos fríos como los nuestros (cerca de 37 grados centígrados) generan radiación infrarroja. Las temperaturas muy altas (millones de grados centígrados) generan rayos X. Más información (en inglés).
Nota: Síganme en Twitter (@astrosofista) para saber más sobre el universo y mi mundo. Desde que comencé a tuitear en el equinoccio de marzo de 2011, casi 4000 tuits ilustran y amplían las más de 250 entradas publicadas en el blog desde entonces. ¿Qué esperan para unirse a esta gran conversación?
0 Sofismas:
Publicar un comentario
<< Home